

Environmental Chemists, Inc.

6602 Windmill Way, Wilmington, NC 28405 。 910.392.0223 Lab 。 910.392.4424 Fax 710 Bowsertown Road, Manteo, NC 27954 。 252.473.5702 Lab/Fax 255-A Wilmington Highway, Jacksonville, NC 28540 。 910.347.5843 Lab/Fax

info@environmentalchemists.com

August 8, 2017

Brunswick County Public Utilities Post Office Box 249 Bolivia, NC 28422 Attn: Glenn Walker

Report #2017-10894

Enclosed please find your analytical report.

Sincerely,

Tammy Duran

Environmental Chemists, Inc.

NORTHERN LAKE SERVICE, INC. Analytical Laboratory and Environmental Services 400 North Lake Avenue - Crandon, WI 54520 Ph: (715)-478-2777 Fax: (715)-478-3060

ANALYTICAL REPORT

WDNR Laboratory ID No. 721026460

WDATCP Laboratory Certification No. 105-330 EPA Laboratory ID No. Wi00034

Printed: 08/08/17 Page 1 of 1

NLS Customer: NLS Project: 284123 96259

Attn: Ray Porter 6602 Windmill Way

Client:

Environmental Chemists

Wilmington, NC 28405

Project: GenX and PFCs by EPA 537M

ND = Not Detected (< LOD) LOD = Limit of Detection LOQ = Limit of Quantitation NA = Not Applicable DVB = Dry Weight Basis %DVB = (mg/kg DWB) / 10000 1000 ug/L = 1 mg/L Reviewed by: MCL = Maximum Contaminant Levels for Drinking Water Samples. Shaded results indicate >MCL.	Values in brackets represent results greater than or equal to the LOD but less than the LOQ and are within a region of "Less-Certain Quantitation". Results greater than or equal to the LOQ are considered to be in the region of "Certain Quantitation". LOD and/or LOQ tagged with an asterisk(*) are considered Reporting Limits. All LOD/LOQs adjusted to reflect dilution and/or solids content.	GenX and PFCs by EPA 537 see attached	Result Units Dilution LOD	COC: 192201:2 Matrix: DW Collected: 07/27/17 10:35 Received: 08/01/17	26127 NLS ID: 1007907	GenX and PFCs by EPA 537 see attached	Solid Phase Extraction by EPA Method 537 yes	Collected: 07/27/17 10:35 Received: 08/01/17 Parameter Units Dilution LOD LOQ/MC	COC: 192201:1 Matrix: DW	26126 NLS ID: 1007906
And liest	 Results greate to reflect dilution 	08/02/17	LOQ/MCL Analyzed			08/03/17	08/02/17	LOQ/MCL Analyzed		
1. Oxt	er than or equal to the Lonardor solids content.	EPA 537 EPA 537	Method			EPA 537	EPA 537	Method		
Authorized by: R. T. Krueger President	OQ are considered	721026460 721026460	Lab			721026460	721026460	Lab Wall		

Reviewed by: And I ON

President

ANALYTICAL RESULTS: Perfluorinated Chemicals by EPA 537 Rev 1.1 Safe Drinking Water Analysis Customer: Environmental Chemists NLS Project Project Description: GenX and PFCs by EPA 537M NLS Project: 284123 Page 1 of 1

w				
	9	<u>ــــــــــــــــــــــــــــــــــــ</u>	MCL	Note
	6.6	21		
	1.3	4.0	A Annual Control of the Control of t	
	0.73	2.3		
	0.80	2.6		
>	2.8	8.8		C
>	1.2	3.9		
-	л Л	4.9		
	:			•
	1.7	5.3		
	1.7	5.3 2.7		<u> </u>
	1.7 0.90	5.3 2.7 3.0		
	1.7 0.90 1.0	5.3 2.7 3.0 6.1		
	1.7 0.90 1.0 1.9	5.3 2.7 3.0 6.1 10		
	1.7 0.90 1.0 1.9 3.2 2.8	5.3 2.7 3.0 6.1 10 8.9		
	1.0 0.90 1.0 1.9 3.2 2.8	5.3 2.7 3.0 6.1 10		S
1 1 1 1 1 2 2 2	Template: 537PPTGENX Printed: 08/08/2017 17:23 Analyzed: 08/03/17 - Analytes: 13 RESULT UNITSWWB DIL 1 10.3 ppt 1 10.3 ppt 1 36.9 ppt 1 8.6 ppt 1 7.86 ppt 1 7.86 ppt 1 7.86 ppt 1 1 7.86 ppt 1 7.86 ppt 1	DIL LOD 1 6.6 1 1.3 1 0.73 1 0.73 1 1.2 1 1.5		DIL LOD LOQ 1 6.6 21 1 1.3 4.0 1 0.73 2.3 1 0.80 2.6 1 2.8 8.8 1 1.2 3.9 1 1.5 4.9

perfluorobutanesulfonic acid (PFBS) perfluorohexanoic acid (PFHxA) perfluoro-2-propoxypropanoic acid (GenX) perfluorohexanesulfonic acid (PFHxB) perfluorohexanesulfonic acid (PFHxS) perfluorononanoic acid (PFOA) perfluorononanoic acid (PFNA) perfluorooctanesulfonic acid (PFOS) perfluorooctanesulfonic acid (PFOA) perfluorooctanesulfonic acid (PFDA) perfluorodecanoic acid (PFDA) perfluorotridecanoic acid (PFTA) perfluorotridecanoic acid (PFTA) perfluorotridecanoic acid (PFTA) C13-PFHxA (SURR) C13-PFDA (SURR)	RESULT	UNITSWWB	믿	LOD	<u>ــــــــــــــــــــــــــــــــــــ</u>	MCL	Note
rohexanoic acid (PFHxA) ro-2-propoxypropanoic acid (GenX) rocheptanoic acid (PFHxS) rochexanesulfonic acid (PFHxS) rococtanoic acid (PFOA) rococtanoic acid (PFDA) rocodecanoic acid (PFDA) rotordecanoic acid (PFTA) rotordecanoic acid (PFTA) rotridecanoic acid (PFTA) rotetradecanoic acid (PFTA) FHxA (SURR) FDA (SURR)	ND	100		6.6	21	0	
ro-2-propoxypropanoic acid (GenX) roheptanoic acid (PFHpA) rohexanesulfonic acid (PFHxS) rooctanoic acid (PFOA) rononanoic acid (PFNA) rooctanesulfonic acid (PFOS) rooctanesulfonic acid (PFOS) rooctanesulfonic acid (PFOS) roodecanoic acid (PFDA) roundecanoic acid (PFDA) rotodecanoic acid (PFDA) rotodecanoic acid (PFDA) rotofridecanoic acid (PFTA) rotetradecanoic acid (PFTA) FHxA (SURR) FDA (SURR)	9,56	ppt		1.3	4.0		
roheptanoic acid (PFHpA) rrohexanesulfonic acid (PFHxS) rrocotanoic acid (PFNA) rrononanoic acid (PFNA) rrocotanesulfonic acid (PFOS) rrocotanesulfonic acid (PFDA) rrodecanoic acid (PFDA) rroundecanoic acid (PFDA) rrododecanoic acid (PFDA) rrotoridecanoic acid (PFTDA) rrotridecanoic acid (PFTA) rrotetradecanoic acid (PFTA) FHxA (SURR)	35	ppt		0.73	2.3	***************************************	
rohexanesulfonic acid (PFHxS) rooctanoic acid (PFOA) rooctanoic acid (PFNA) rooctanesulfonic acid (PFOS) rooteanoic acid (PFDA) roundecanoic acid (PFDA) roundecanoic acid (PFDA) rotodecanoic acid (PFDA) rotodecanoic acid (PFTA) roteradecanoic acid (PFTA) FHxA (SURR)	7,4	ppt		0.80	2.6		
prooctanoic acid (PFOA) prononanoic acid (PFNA) prooctanesulfonic acid (PFOS) prooctanesulfonic acid (PFOS) proundecanoic acid (PFDA) proundecanoic acid (PFDA) prododecanoic acid (PFTA) protridecanoic acid (PFTA)	[5.33]	ppt	_	2.8	8.8		_
prononanoic acid (PFNA) procetanesulfonic acid (PFOS) prodecanoic acid (PFDA) prodecanoic acid (PFDA) prodecanoic acid (PFDA) prodecanoic acid (PFTDA) protridecanoic acid (PFTDA) protridecanoic acid (PFTA)	6.28	ppt	_	1.2	3.9		
rooctanesulfonic acid (PFOS) rodecanoic acid (PFDA) roundecanoic acid (PFUnA) rododecanoic acid (PFDoA) rotordecanoic acid (PFTDA) rotridecanoic acid (PFTA) rotetradecanoic acid (PFTA) FHXA (SURR) FDA (SURR)	ND	ppt	-	1.5	4.9		
rodecanoic acid (PFDA) roundecanoic acid (PFUnA) roundecanoic acid (PFDoA) rotridecanoic acid (PFTDA) rotridecanoic acid (PFTTA) FHXA (SURR) FDA (SURR)	9,66	ppt		1.7	5.3		
roundecanoic acid (PFUnA) rododecanoic acid (PFDoA) rotdridecanoic acid (PFTDA) rotetradecanoic acid (PFTA) FHxA (SURR) FDA (SURR)	[1.06]	ppt	***	0.90	2.7		د
rododecanoic acid (PFDoA) rotridecanoic acid (PFTDA) rotetradecanoic acid (PFTA) FHxA (SURR) FDA (SURR)	N	ppt	_	1.0	3.0		
rotridecanoic acid (PFTrDA) rotetradecanoic acid (PFTA) FHxA (SURR) FDA (SURR)	S	ppt		1.9	6.1		
rotetradecanoic acid (PFTA) FHxA (SURR) FDA (SURR)	2	ppt	_	3.2	10		
FHxA (SURR) FDA (SURR)		ppt	-	2.8	8.9		
FDA (SURR)	N						တ
	ND 74.859%						y) (

J = Result enclosed in brackets is between LOD and LOQ, a region of less certain quantitation.
S = This compound is a surrogate used to evaluate the quality control of a method.

The PFOA branch isotope peak is included in the PFOA calculation per EPA directive. GenX analysis performed by Modified EPA Method 537.

ENVIRONMENTAL CHEMISTS, INC

NCDENR: DWQ CERTIFICATION # 94 NCDHHS: DLS CERTIFICATION # 37729

6602 Windmill Way Wilmington, NC 28405 OFFICE: 910-392-0223 FAX 910-392-4424 info@environmentalchemists.com

COLLECTION AND CHAIN OF CUSTODY

Temperature when Received: CLIENT: Brunswick County Water Sampled By: ADDRESS: 2011/10 Sample Identification Transfer 0 Markellus スト8万 Date 一下 のかのかって のアバ Collection Time 035 Relinquished By: 30,5 2,0% Temp Accepted: 700 PROJECT NAME: REPORT TO: COPY TO: CONTACT NAME: E Sample Type Composite SAMPLE TYPE: I = Influent, E = 6 S C (D C 0 O 0 G ဂ C 9 Ω O ဂ ဂ D \circ C ဂ or Grab Container Ø U Ω ס O ס ט ဂ ס Ω ס G G l G ס ס Ω ס Ω ס (P or G) Date/Time Rejected Chlorine Sess 20) mg/L Same LAB ID NUMBER Effluent, W = Well, ST = Stream, SO = Soil, SL = Sludge, Other: $\mathcal{NL} \cdot \mathcal{O}$ NONE HCL PRESERVATION H2SO4 Received By: ниоз Resample Requested: NAOH email: Menn. Walker & Brunswick CON PHONE/FAX: PO NO: REPORT NO: THIO Other EPa 537 + Genx ANALYSIS REQUESTED Date/Time 1200

Delivered By:
Comments:

PARY.

Received By:

Date:

Time:

- FOR

TURNAROUND: